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We report theoretical growth rates for the Rayleigh-BBnard instability when the fluid 
layer is contained by non-slip walls in a cylindrical geometry with diameter D and 
height L. Our results are for the growth rates of the first two axisymmetric modes as 
functions of the Prandtl number P and the aspect ratio y = D/2L. We have considered 
the two extreme cases of ideally insulating and ideally conducting side walls, and 
found that the growth rate is relatively insensitive to the choice of the thermal bound- 
ary conditions on the side walls. Our results are useful in understanding recent experi- 
mental measurements of the convective time-scale. 

1. Introduction 
When a layer of fluid is heated from below, Rayleigh-B6nard convection will occur 

if the temperature difference A T  across the layer exceeds a critical value A%. The walls 
containing the fluid can significantly affect the convecting state, and wall effects have 
been the subject of anumber of recent theoretical studies. These include work by Davis 
(1967), Liang, Vide1 & Acrivos (1969), Charlson and Sani (1970, 1971, 1975), Daniels 
(1977, 1978), Hall t Walton (1977), Brown & Stewartson (1978) and Stewartson & 
Weinstein (1979). There have also been several experimental studies by Rossby (1 969), 
Krishnamurti (1970), Koschmieder (1974), Koschmieder & Pallas (1974), Ahlers (1975) 
and Berg6 & Dubois (1974), which provide detailed information on the steady-state 
properties of the convective state. More recently, a number of experimenters, in- 
cluding Behringer & Ahlers (1977), Wesfreid et al. (1978) and Ahlers et al. (1980) 
have studied the time-development of steady convection. 

The time-scale for establishing the convective state is set by the linear growth rate u 
through the appropriate amplitude equation, an idea first developed by Segel(l969) 
and Newel1 & Whitehead (1969). The parameter u has only been obtained for a few 
special cases. For instance, Davey (1962) has calculated u for P = 1 for an infinite 
fluid layer with non-slip horizontal boundaries. (The Prandtl number P is defined 
below.) Behringer & Ahlers (1977) and Wesfreid et at?. (1978) have calculated Q for the 
same boundary conditions but for all Prandtl numbers. To our knowledge, no detailed 
calculations of cf have been made for moderate size geometries, with the experimentally 
relevant conditions of both horizontal and vertical rigid non-slip walls. Recent im- 
provements in experimental technique seem to warrant such calculations. Accord- 
ingly, the object of this paper is to provide values of u appropriate to experiments done 
in cylindrical geometries for a large range of aspect ratios y. Here y is defined as the 
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ratio D/2L with L the height of the fluid layer and D its diameter. In particular, we 
wish to address the experimental observation by Behringer & Ahlers ( 1  977), who used 
fairly small containers ( y  = 2-08 and 4-72), that the convective t,ime-scale seems to 
vary rather slowly with aspect ratio. In addition, model calculations by Brown & 
Stewartson (1978) indicate that both the first and second radial modes contribute to 
the convective state. Accordingly we present results for both cases. Koschmieder’s 
(1974) visual observations of convection in cylindrical containers indicate that the 
flows are axisymmetric and take the form of toroidal rolls centred on the cylinder axis. 
Although there is some evidence (Ahlers et al. 1980) that under the appropriate con- 
ditions straight rolls and hexagons in a cylinder may be important, we present results 
only for axisymmetric flows. 

2. Mathematical framework 
We specify cylindrical symmetry by writing a dimensionless velocity field U as 

t ,  +I U = (L/KR))  v = - L2 curl 

and a dimensionless temperature field O M 

OAT T(r ,  Z ,  t )  - [TIower- ( z / L )  AT]. 

Here v is the physical velocity, L is the fluid (or container) height, K is the thermal 
diffusivity, R is the Rayleigh number, Y is the stream function and 4 is an azimuthal 
unit vector in cylindrical co-ordinates. The temperature T is assumed to be inde- 
pendent of r at the lower horizontal boundary where it has the value Tlower, and at the 
upper horizontal boundary where it has the value TIower- AT. The Rayleigh number 
is defined conventionally as R = gaL3 ATIKv, where g is the acceleration of gravity, a 
the isobaric expansion coefficient and v the kinematic viscosity. The use of R-) in 
equation ( 1 )  provides a useful although not essential scale factor. The remaining global 
parameters for the system are the Prandtl number P = V / K  and the aspect ratio y. 

While the convection is still in the linear domain, eachmode, which has bothtempera- 
ture and velocity parts, responds as exp (at), where t= tK/L2  is the dimensionless time. 
The growth rates u are real, as shown for instance by Schluter, Lortz & Busse (1966), 
and depend on R, P and y. Of particular interest is the Rayleigh number R, a t  which 
the nth mode growth rate u, is zero. Values of R, have been previously computed by 
Charlston & Sani (1970, 1971) for both axisymmetric and non-axisymmetric modes. 

We have extended the variational principle of Charlson & Sani to the calculation of 
the growth rate. The functional we need is 

I re, $; u, R&, PI = 2 ~ q o u .  2) - ( ~ z [ [ a ~  eai8 + aiuj aiuj] + a[e2+ P-1  u . UI), (3) - M - 
where e(r,z)  = O/errt, $(r,z) = Y/eVt, and u(r,z) = U/eut. Angular brackets denote an 
average over the cylindrical volume. Varying I with respect to 8 generates the heat 
equation, while varying with respect to $ generates the curl of the Navier-Stokes 
equation, both in the linearized form of the Bomsinesq approximation in the absence 
of steady convection and given the previous specification of exponential time depend- 
ence. These equations are discussed in detail by Chandrasekhar (1961), and Charlson & 
Sani (1970). The requisite boundary conditions are these: (1) to implement a non-slip 
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constraint on the velocity, both @ and grad@ must vanish on all surfaces; (2) the 
function 8 must vanish on the horizontal surfaces, corresponding to experimentally 
fixed temperature a t  those surfaces; (3) the product 8aO/ar must vanish on the vertical 
walls. Insulating walls imply the condiraint a8/ar = 0 at r = yL, whereas conducting 
walls are represented by 8 = 0 at  r = yL .  For a real experiment, the actual conditions 
on 8 at  the fluid-side-wall interface are that 8be continuous and that the heat current 
also be continuous. Additional conditions must be applied at the outer radius of the 
walls. Since such an exact treatment of the thermal boundary conditions is neither 
computationally practiGa1 nor general to all experiments, we have chosen the two ex- 
treme cases above. In the results which follow, we show that the growth rate depends 
very little on the choice of thermal conditions for y 2 1. 

In choosing trial functions for the variational problem, we follow Charlson & Sani 
(1970) and adopt the forms 

$(r,  = zBhYk(r /yL)  x m ( z / L ) ,  (4) 

8(r, z )  = &Iij J,(air/yL) sin (jnz/L). ( 5 )  

The eigenvalue ai in the Bessel function J,(a,r/yL) is chosen to meet the boundary 
conditions at  r = yL,  namely that either J ,  or JA vanish there. One can expect the 
first relevant modes to be symmetric about the midplane; hence the integer j in the 
sine function can be restricted to odd integers. 

The radial function Yk is specified by the differential equation 

where p = r /yL,  so that the range of p is 0 Q p < 1. The quantity & is an eigenvalue of 
this fourth-order equation. The boundary conditions on Yk follow from the use of Yk 
in the stream function @. The vanishing of $ and grad$ at the walls requires 

A finite value for u , 2  as one approaches the axis implies 

1 
lim - Y;(p )  = finitenumber. 
P O  P 

Continuity of the horizontal portion of u for arbitrary approach to the axis requires 

The axial function X, is most easily developed with an independent variable that is 
zero at the midplane; let 

cs ( z / ~ ) - a ,  X m ( C ) =  x m ( z / ~ ) ,  (10) 

where 5 has the range - 4 < 5 < 3. The differential equation for X ,  is simply 
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where a,,, is an eigenvalue. The boundary conditions are that 
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Xm( & g, = X( k $1 = 0. (12) 

Solutions to equation (1 1) have been discussed a t  some length by Chandrasekhar 
(1961, appendix v and references therein). The remaining functions and their eigen- 
values as well as useful overlap integrals have been tabulated by the authors and are 
available on request. 

3. The growth rate derivative 
Substituting the trial functions into (3) and then varying wit.h respect to the ex- 

pansion coefficients {Aij ,  Bh} generates two homogeneous matrix equations. If a non- 
zero solution for the expansion coefficients is to exist, the determinant D of the com- 
bined matrix coefficients must vanish: 

D(c, R ,  P ,  y )  = 0. (13) 

The critical Rayleigh number R, = R, is determined as the lowest R for which 
D(0,  R, P ,  y )  = 0 holds; R, is the next lowest Rayleigh number which satisfies this 
condition for an axisymmetric mode. When u is set to zero, the functional I no longer 
depends on P ,  and so the R, are independent of the Prandtl number. 

Of most use are the growth rate derivatives (at threshold), 

where. e = (R- R,) R,, and is understood to depend on the R ,  for the appropriate 
mode. We calculated that derivative by numerically solving D(Aa,, R ,  P ,  y )  = 0 for 
R = R,+ AR, given a prescribed small Au,, typically 

The dependence of dun/& on the Prandtlnumber can be deduced from the functional 
I and the ensuing structure of D .  Equivalently one can reason from the functional as 
follows. Let [On, $,I denote the fields that give the stationary value a t  u, = 0, R4 = Ri. 
The fields [On + AO, $n +A$] are to do the same at u, = Awn, Ri = R i  + A(R4). Now 
consider the difference of the two functionals. The property that [On, $,I provide an 
extremum enables one to eliminate those linear infinitesimal terms that contain A0 
and A@. The result is 

I [On + $n + A$;  Ann) R i  + A(R*), PI - 1 [ O n ,  $n; 0, ~ i ,  PI I 
= A(R4) 2(O,u, .%) -Au,{O; + P-l Iu,I2) +O(A2). (15) 

Moreover, the equations of motion themselves imply that I = 0 at its stationary 
value, and so the left-hand side of (15) is zero. Dividing through by A(R3) and passing 
to the limit, one finds 

Au A(R4) -- dun - l i m n  - 
de A(R4) he 
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after I = 0 has been invoked to eliminate ,R,. The dependence of the growth rate 
derivative on P is delightfully simple. We note that Joseph (1 976) obtained a similar 
result for a more complex problem. We have presented the above proof to provide a 
simple derivation obtainable within the context of the preceding discussion. 

We tabulate du,/dc for n = 1 and 2, both with P = 1 and co. The value of the 
derivative at any other Prandtl number can be computed readily from the exact 
interpolation formula derivable from equation (17): 

Our experience indicates that the tabulated growth rate derivatives are numerically 
reliable to 0.2 %, Computations for the tables were done with the h t  three symmetric 
axial trial functions (j = 1,3,5) and with eight radial trial functions. As the aspect 
ratio was increased, the chosen set of radial functions ww shifted toward higher spatial 
frequency. The values of R, and R, so calculated typically agree with Charlson & Sani 
(1971) to within 0.02 yo over their range 1 Q y < 8. Nowhere do the two calculations 
differ by more than 0.07 %, although Charlson & Sani typically used ten radial trial 
functions. (As far as R, is concerned, of course, we simply repeated their method, but 
computational limitations restricted us to fewer trial functions.) In a few instances, 
we calculated du,/de a second way: we solved the matrix equations for the expansion 
coefficients {Ati, Bkm} a t  R, and then evaluated the volume averages in (16). Using the 
same trial function, we found agreement on the derivative to better than 0.02 yo. We 
have also done several calculations with 10 radial trial functions and found agreement 
to within 0.2 yo. 

4. Discussion 
The results of our calculations are presented in table 1 and figures 1, 2, and 3. 

(Although we calculated the growth rate derivative through y = 16, the variation in 
the derivative is no more than 1 yo for y > 10, so only values for y < 10 are given in the 
table.) The Rayleigh numbers are not given here, as they may be obtained from Charl- 
son & Smi  (1970). The graph in figure 1 displays dull& when P = 1 and the walls are 
insulating. Similarly, figure 2 shows du,/de when P = 1 with conducting walls. Figure 1 
is typical of all cases and will serve as a point of departure. Three features are note- 
worthy. First, there is relatively little change, no more than 10 %, in du,/de with y 
until y is smaller than roughly 2.0. Second, du,/de is very insensitive to the thermal 
boundary conditions. For instance, when P = 1.0, duJde for the cases of insulating 
and conducting walls differ by no more than 8 yo for y as low as 0.76. This is particularly 
useful, since an exact accounting of the true experimental conditions is generally 
rather difficult. Our results help explain why Behringer & Ahlera (1977) obtained, 
within the experimental scatter of 20%, the same growth rate for y = 2.08 and 
y = 4.72, and a growth rate value which was experimentally indistinguishable from 
the infinite aspect ratio prediction. The thiFd notable feature is the oscillations in 
du,/de versus y. The relative minima in du,/ds correlate well with relative maxima 
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Y 
1.00 
1-25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3-00 
3.25 
3.50 
3-75 
4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5-75 
6.00 
6.25 
6.60 
6.76 
7.00 
7.25 
7.50 
7-75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 
9.50 
9.75 

10.00 

Insulating 
7- 

( d ~ l l Q w *  

25.66 
20-27 
17.71 
19.12 
22.13 
20-33 
18.91 
19.10 
20.80 
20.17 
19.31 
19.27 
20.24 
20.04 
19-49 
19.38 
19.99 
19.94 
19-57 
19.46 
19.86 
19.87 
19.62 
19.50 
19.80 
19.82 
19.64 
19.54 
19-75 
19.79 
19.65 
19.56 
19.73 
19-77 
19.65 
19.58 
19-71 

(dfl,/dd I 

34.52 
24.59 
18-96 
13-66 
11.08 
16-21 
16.06 
13.90 
12.01 
13.33 
14.78 
13-76 
12-49 
12.93 
14.10 
13.60 
12.73 
12.91 
13-73 
13.47 
12.85 
12.81 
13.51 
13.37 
12.92 
12.85 
13.29 
13.30 
12-95 
12-87 
13.20 
13.27 
13-02 
12.87 
13.15 
13.23 
13.03 

(d%/d4, 

57.93 
40.45 
30.03 
19-79 
15.32 
25.42 
25.40 
20.94 
17.30 
19.94 
23.08 
20.92 
18.38 
19.28 
21.78 
20.72 
18.94 
19.31 
2 1 -05 
20.52 
19.24 
19.16 
20.64 
20.38 
19.40 
19.26 
20.20 
2023 
19.50 
19-33 
20.04 
20.18 
19.64 
19-34 
19.93 
20.09 
19.67 

Conducting 
-7 

(dfllP4 m 

25.92 
22.25 
20.53 
20.65 
20.96 
20.48 
19-95 
19.90 
20- 17 
20.08 
19.80 
19.77 
19-93 
19.89 
19.73 
19.71 
19.85 
19.81 
19.67 
19-69 
19.81 
19.75 
1966 
1969 
19.78 
19.72 
19.66 
19.66 
19.75 
19.71 
19.65 
19-68 
19-74 
19.69 
19.65 
19.68 
19.74 

(da*ldd 1 

30-27 
2245 
18.46 
15.35 
14.26 
15.00 
14.97 
14.10 
13-47 
13.71 
13.96 
13.62 
13-25 
13.41 
13-58 
13.39 
13.15 
13-31 
13.42 
13.25 
13-08 
13-26 
13.33 
13.17 
13.04 
13.21 
13.28 
13-12 
13.01 
13.17 
13-24 
13.10 
12-99 
13.08 
13.16 
13.08 
13.00 

(df l* ld4, 

46.86 
36.41 
29- 16 
23-52 
21-39 
22.85 
23.08 
21-47 
20.24 
20.72 
21-32 
20.7 1 
19-95 
20.29 
20-67 
20-31 
19-82 
20.15 
20-41 
20.07 
19.73 
20-09 
20-27 
19-93 
19-66 
20.02 
2 0  17 
19.86 
19.62 
19.95 
20.10 
19.82 
19.61 
19.77 
19.94 
1 9.79 
19-59 

TABLE 1. The growth rate derivative da,/ds associated with the fist and second modes (n = 1.2). 
for the cases P = a, and P = 1 and co respectively, m a  function of aspect ratio y.  Values for both 
insdating vertical walls and conducting vertical walls are given. Results for n = 1, P = 1 
shown in figures 1 and 2. 

in R,, and with changes, as y increases, to patterns with one additional roll. For exam- 
ple, aa shown in figure 3, the minimum of da, /ds in the vicinity of y = 2.6 precedes the 
respective maximum in R, by about 0.2 in aspect ratio. Charlson & Sani (1970) give 
the aspect ratio at which roll changes occur (to within & 0-13) for aspect ratios up to 
y = 8; in all those instances, the minimum in da,/ds lies within or just below the 
transition region. 

One can understand the oscillations intuitively. When the aspect ratio is centred 
between transition points in the roll pattern, the rolls are reasonably uniform in cross- 
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0 4 8 12 1 

FIQUIW 1. The growth rate derivative du,/de as a function of the aspect ratio y for insulating 
vertical walls and P = 1. The behaviour a t  the relative maxima and minima is smooth, ea demon- 
strated by auxillary calauJations in steps of Ay = 0.05 near y = 2*6,4.05, and 4-66. The horizontaJ 
bar is the value of da/& at P = 1 and y = 00, as ca.lculated by Behringer C Ahlers (1977). 

Aspect ratio, y 

15.0 

s 
L 

.g 14.0 
8 
5 
s 
3 

.- c 

Q 

3 
13.0 

I I ~1 

k 
0 4 8 12 16 

Aspect ratio, y 

FIGURE 2. The growth rate derivative du,/de as a function of aspect ratio y for conducting 
vertical walls end P = 1. The horizontal bar is the value given by Behringer k Ahlers (1977) for 
y = 00. 
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1790 

4: 
1770 

1750 

13.8 

13.4 

d -- 
$ 13.0 

12.6 

a 

2.2 2.6 3.0 3.4 
Aspect ratio, y 

FIGURE 3. Comparison of relative extreme in R, (top) and du,/de (bottom), over the range 
2.3 d y d 3.4, which includes the transition from 2 to 3 rolls. The calculations were done for P = 1 ,  
with insulating vertical walls. 

section as one goes from axis to walls. Near transition points, however, the outermost 
roll or two have an anomalous structure: wider or more narrow than usual. These 
anomalous rolls have a structure that is perturbed from the smooth infinite aspect 
ratio planform because of the side walls. One would expect the system to  establish the 
less-t,han-optimum structure less readily than the uniform rolls. The growth rate 
derivative should be relatively small and the onset Rayleigh number relatively large as 
our calculations indicate. 

As y grows large, the oscillations in da,/de converge toward the value appropriate 
for infinite aspect ratio, as computed from the expression given by Behringer 6 Ahlers 
(1977). From equation (17), one can understand why the oscillations must diminish in 
magnitude. As y increases there is a relatively smaller contribution to the volume 
averages from t,he region near the walls. The roll structure near the walls must have 
progressively less influence on da,/ds, and so that quantity must show progressively 
less variation with aspect ratio. The theoretical expression, equation ( 1  7), alsoindicates 
why da, /ds is insensitive to the thermal boundary conditions. Provided y is sub- 
stantially greater than unity, the volume averages are not sensitive to the boundary 
conditions on the temperature field 8 at the walls. 

A few words should be said about roll patterns that are not axisymmetmc. Charlson 
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& Sani (197 1) computed the Rayleigh number at which states with one to five full 
cycles in azimuthal variation become unstable. Once the aspect ratio exceeds three or 
so, there is always some such state with critical Rayleigh number within 1 yo of the 
marginal number for the axisymmetric state. Moreover, there are aspect ratios at 
which a non-axisymmetric state becomes unstable a t  a lower Rayleigh number than 
does the axisymmetric state. Thus i t  would be useful, in principle, to compute the 
growth rate derivative for the first few states with azimuthal variation. 

Here we note only that, when the marginal Rayleigh numbers differ little from that 
for the axisymmetric state, the growth rate derivative will, we expect, also differ little. 
The integral expression in (16) provides the basis for this belief. Although relations 
( 16) and ( 17) were derived from the variational principle with axisymmetry specified, 
they also follow directly from the linearized Navier-Stokes and heat equations without 
any symmetry assumption. The correlation between Bu .2 that appears in the numera- 
tor of (16) should not be sensitive to a change in symmetry. The denominator is 
essentially a normalizing factor. Thus, whenever R, changes little, one can expect 
da,/ds to follow suit. For support, one can note the situation at  infinite aspect ratio; 
in the Boussinesq approximation, the growth rate derivative is independent of the 
azimuthal dependence of the mode. 

5. Summary 
We have calculated the growth rate for the first two radially symmetric convective 

modes in cylindrical geometry. Our results explain the experimental observation of 
Behringer & Ahlers (1977) that u seems to depend a t  best weakly on aspect ratio for 
y 2 2. We find relatively little dependence of u on the thermal boundary conditions 
at  the side walls for y z 0.75. This result is particularly useful, since exact experimental 
thermal boundary conditions are rather difficult to implement. 
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